Solution of Integral Equations Using Padé Type Approximants
نویسندگان
چکیده
منابع مشابه
Convergence of Multipoint Padé-type Approximants
Let µ be a finite positive Borel measure whose support is a compact subset K of the real line and let I be the convex hull of K. Let r denote a rational function with real coefficients whose poles lie in C \ I and r(∞) = 0. We consider multipoint rational interpolants of the function f (z) = dµ(x) z − x + r(z), where some poles are fixed and others are left free. We show that if the interpolati...
متن کاملANALYTICAL-NUMERICAL SOLUTION FOR NONLINEAR INTEGRAL EQUATIONS OF HAMMERSTEIN TYPE
Using the mean-value theorem for integrals we tried to solved the nonlinear integral equations of Hammerstein type . The mean approach is to obtain an initial guess with unknown coefficients for unknown function y(x). The procedure of this method is so fast and don't need high cpu and complicated programming. The advantages of this method are that we can applied for those integral equations whi...
متن کاملFast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants
We present two new algorithms, ADT and MDT, for solving order-n Toeplitz systems of linear equations Tz = b in time O(n log n) and space O(n). The fastest algorithms previously known, such as Trench’s algorithm, require time Ω(n2) and require that all principal submatrices of T be nonsingular. Our algorithm ADT requires only that T be nonsingular. Both our algorithms for Toeplitz systems are de...
متن کاملNumerical solution of functional integral equations by using B-splines
This paper describes an approximating solution, based on Lagrange interpolation and spline functions, to treat functional integral equations of Fredholm type and Volterra type. This method can be extended to functional differential and integro-differential equations. For showing efficiency of the method we give some numerical examples.
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Integral Equations and Applications
سال: 2001
ISSN: 0897-3962
DOI: 10.1216/jiea/996986966